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This paper presents an implicit procedure for the solution of the incompressibie 
Navier-Stokes equations in primitive variables. The time dependent momentum equations are 
solved implicitly for the velocity field using the approximate factorization technique. The con- 
tinuity equation is satisfied at each time step through the solution of a Poisson type equation 
for the static pressure. A consistent finite-difference scheme which satisfies the compatibility 
condition using a non-staggered grid is used in the finite difference approximation of the static 
pressure Poisson equation. The results of the numerical computations in a driven cavity, 
which are presented for the history of the residues, at several Reynolds numbers using 
different computational parameters, demonstrate the excellent convergence characteristics of 
the solution procedure. A stability analysis is conducted for the non-iterative phase and 
numerical results are presented for a given set of compational parameters. Numerical results 
obtained for the steady state static pressure in the driven cavity are presented for the first time 
at Re = 1000 using a non-staggered grid, and the steady state velocity, vorticity, and pressure 
contours at Re= 100, 400, and 1000, are compared with the computational results of other 
investigators. Additional results using a curvilinear grid are also presented for the flow in a 
cascade of circular airfoils at Re = 1000. 0 1990 Academic Press. Inc. 

The feasibility of obtaining an economical three-dimensional solutio 
compressible Navier-Stokes equations has been demonstrated for laminar an 
turbulent flows in different geometries of practical interest [3-IO]. 
warming [I 1, 121 made a significant contribution through an imph 
for the coupled system of equations in conservation law form, which requires the 
solution of a block-tri-diagonal linear system. In their work they extended the 
algorithm as done by Birley and McDonald [12] for the compressible Na 
Stokes equations to the coupled system of Euler equations. Shamrouth et cz 
used the method of Briley and McDonald [I23 to predict the cascade 
using the averaged Navier-Stokes equations. Similar procedure was dev 
MacCormack [ 13 ] in which he used a new non-centered method that require 
the solution of block-bi-diagonal linear system of equations. Lerat [14, 1.5 
proposed an implicit procedure that is space dissipative but similar to the 
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and Warming scheme. These two methods have been applied to compute the tran- 
sonic flows over an airfoil by solving the Euler equations [16, 171. 

The main obstacle in developing,similar effective procedures for the solution of 
the incompressible Navier-Stokes equations is the absence of a time derivative in 
the continuity equation. On the other hand, the compressible N-S equations solu- 
tion procedure cannot be used to compute an incompressible flow because of the 
singular behavior of the equations as the Mach number approach zero [18]. This 
leads to an ill-conditioned behavior and consequently very slow convergence. One 
of the important methods that has been used extensively, during the past decade, 
for solving the incompressible two-dimensional flow is the stream function vorticity 
formulation [19-211. An inconvenience of this formulation is that the pressure is 
not directly obtained and consequently additional calculations are required for its 
determination. 

There are two formulations that are valid for the solution of two- and three- 
dimensional incompressible flow equations, the artificial compressibility technique 
and the use of a Poisson equation for the pressure. Chorin [22] proposed the 
method of artificial compressibility to solve the incompressible flow equations. The 
approach modifies the continuity equation through the addition of a pressure-time 
derivative term which is divided by a parameter similar to the speed of sound. 
Steger and Kuttler [23] lirst used this method to compute the vortex wakes. Choi 
and Merkel [24] investigated the stability and the convergence characteristics of 
this method using the LB1 scheme. They recommended that the factor of the time 
derivative term in the continuity equation be chosen near free stream velocity in 
order to speed up the convergence of the numerical solution. The same conclusion 
was arrived at by Rizzi and Erikson [25]. The use of such a low value for the 
pseudo speed of sound precludes the use of this formulation in transient problems, 
since the continuity equation is only satisfied at the steady state. If the continuity 
equation is to be satisfied at each time step, this pseudo speed of sound must be 
large [23], in which case the solution suffers slow convergence [25]. The incom- 
pressible flow momentum equations have also been solved in their primitive form 
along with a Poisson equation for the pressure [26]. The Poisson equation for the 
pressure is obtained by taking the divergence of the momentum equation. This was 
first presented by Harlow and Welch [27] in 1965 and Welch et al. [28] in 
conjunction with their Marker and Cell method. Earlier efforts at the numerical 
solution of the Poisson equation with Neumann boundary conditions using 
iterative methods on a non-staggered grid encountered difficulties since the com- 
patibility condition that relates the source term of the pressure Poisson equation 
and the Neumann boundary conditions, through Green’s theorem, is not satisfied 
[29]. Numerical fixes to this problem include the special treatment of the boundary 
conditions by Chorin [30] and the modification of the source of the Poisson 
equation by Briley [29]. The use of the staggered grid in the MAC method of 
Harlow and Welch [27] and Welch et al. [28] provided a remedy for the satis- 
faction of the compatibility condition. 

Abdallah [ 1 ] proposed a consistent differencing scheme for the Poisson equation 
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the Neumann boundary conditions, which numerically satisfies the com- 
atrbiiity condition on a non-staggered grid. Three main steps are involved in this 

scheme: first the viscous terms in the pressure boundary con 
in terms of the vorticity. Second, the pressure Poisson equati 
vative form. Third, the derivatives in the Poisson equation and its bou 
tions are discretized consistently. The convergence of this sch.eme was dern~~str~~e~ 

the solution of the primitive form of the N-S equations in the driven cavity [2]~ 
e to the explicit marching procedure that was used in the unsteady rn~rnen~~ 

equations, the highest Reynolds number that csuld be resolved was 400 on a 
71 x 71 grid. In order to reach higher Reynolds number implicit time marching 
schemes are needed so that the time step is not restricte by the CFL condition. 
Also, solution of the momentum equations in better 
conve ce and deals effectively with the very stiff tern of 
equations, at high Reynolds numbers. 

In the present work a consistent finite differencing scheme is developed for t 
pressure Poisson equation in general curvilinear coordinates and is combined 
an implicit scheme for solving the coupled rnQrne~t~rn equations on a non- 
staggered grid. The procedure is presented for two-d~rne~s~o~a~ flows t its exten- 
sion to three-dimensional flow is straightforward. The 
solution are first order in time [ 111, however second-o 
demonstrated in Ref. [7]. A standard von Neumann ~~~ear~ze~ stability a 
erformed for the noniterative phase of the two-dimensional algorithm, 

numerical results are presented. The convergence characteristics for the 
procedure are presented for the driven cavity oblem, which has served as a 
standard st case for almost every new innov on associat 

ressible S equations. Numerical solutions are obtained for 
a driven cavity and in a cascade of s metric airfoils. The results 
pressure, vorticity, and the velocity 
orably with the computational res 

much finer grids [32, 361. Results which are pre 
numerical scheme, at different CFL conditions an 
show excellent convergence characteristics. Furthe 

for the residues in the 

at the combination of the pressure Poisson equation with the implicit couple 
schemes is superior to the explicit and uncoupled schemes. 

GOVERNING EQUATXQNS 

The governing equations for the time dependent incompressible laminar 
written in strong conservation law form, in general curvilinear coordinates (5, qJ1 
using the general transformation by Viviand [33] and Vinokur [34], 
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where 

and 

E= J-‘(uU+<,p, vU+~,P)~ 

F= J-‘(uV+v],p, vV+qyp)= 

v*=a,(~-lvg.vg)a,+a,(~-'vg.vy)a, 
+a,(~-'v~.v~)a,+a,(~-'vrl.vul)a,. 

In the above equations, u and v are the Cartesian velocity components while U and 
I/ are the contravariant velocity components defined as 

and 

v= q,u + qyv. (2) 

The Poisson equation for the pressure is obtained by taking the divergence of the 
unsteady momentum equations and using the continuity equation to eliminate the 
viscous terms [26]. Upon applying the general coordinate transformation [33, 341, 
the Poisson equation for the static pressure is expressed in general curvilinear 
coordinates as 

attaP, + ‘YP~ + 4 + wp, + 7~~ + 02) + a,D = 0, (3) 

where 

a=J-‘V5.V& 

p= J-‘Vy Vy, 

y=J-‘Vc.Vq, 

and 

As suggested by Harlow and Welch [27], the dilation term, D, is retained in Eq. (3) 
in order to avoid the numerical instability. 
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Equation (3) is a second-order elliptic partial differential equation which is 
solved for the static pressure. The conservative form of this equation is necessary for 
the consistent finite differencing scheme which will be discussed later. 

Boundmy Conditions 

The Neumann boundary conditions for the pressure are obtained from the 
momentum equations. A solution for the Poisson equation witb 
conditions, exists only if a compatibility condition is satisfied. 
condition results from Green’s theorem which relates the source term of the Poisson 
equation and its Neumann boundary conditions as 

(41 

where (Z(o, + a,o, + Jp’a$) is the source term of the Poisson equation, c is the 
enclosing the area of solution domain A, an 

ndary c. This condition is not automatically 
]. A consistent finite difference scheme for 

boundary conditions that satisfies the compatibility condition on a non-staggered 
grid, which was proposed by Abdallah [l, 21 in Cartesian coordinates: is extended 
here to the general curvilinear coordinate. 

The boundary conditions for the static pressure Poisson .equation are obtained 
from the momentum equations after replacing the Laplacian of the velocities 
(diffusion term) by the curl of the vorticity. At the constant ~-boundaries the 
pressure boundary conditions are obtained from t 

while the boundary condition at constant <-boundary is obtained from the equation 

In the above equations the vorticity D is expressed in ter s of the velocity in 
conservative form as 

The present procedure for solving the incompressible Navier-Stokes equarions 
consists of two steps at each time level. In the first step the momentum equations 
are solved implicitly in coupled form, using the method of approximate factori~a- 
tion Cl I], to get the velocity field at the new time level. In the secon 

oisson equation for the static pressure is solved iteratively using the method of 
point SOR. 
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The Velocity Field 

The Euler implicit differencing method is used for the time marching of the 
momentum equations. The semi-discretized form of the equations, after the 
approximate factorization of Beam and Warming [ 111 is 

[Z+Jdt(d,A”-ZR,‘d,V5:.V5 a,)][Z+Jdt(a,B”-ZR,‘a,Vr.Vr a,)] Aq” 

= J At{ - (8,E; + d,F;) + R,‘(D,, + D,, + D,, + D,& q” 

f4?(Da+Q&fq”-1), (8) 

where 

and 

D,, = a, vt . vt a,, 

D,,=a,vmap, 

D,,=a,vdw,, 

D,,=a,vr.vqa,, 
A q” = q” + 1 - q”, 

Aq”- ’ appears on the right-hand side of Eq. (8) as a result of time lagging the cross 
derivatives of the vector, q, one time step. 

In order to be compatible with the implicit algorithm, the linearization of the flux 
vectors E and F results in defining the flux vectors jacobian matrices, A” and B” in 
the form 

A” = aqaq = J- ’ 2&x + tyv 5,u 
LV 25,v + 5xu 

and 

B” = aqaq = Jp l 2vx + VyY ylyu 
YXV 2?,u+Yxu . 

(9) 

(10) 

Equation (8) represents the semi-discretized form of the momentum equations 
which is solved for the velocity field, q. This solution is performed in two steps; each 
involves a solution of a one-dimensional block tri-diagonal matrix inversion. In the 
discretization of Eq. (8), the operators in the convection terms ac and d, are 
approximated using second-order central differencing expressions. The use of the 
second-order space central differencing for the convection terms is responsible for 
introducing high frequency oscillations in the numerical solution. These high 
frequency oscillations can be suppressed by adding an explicit fourth-order dissipation 
term to the right-hand side of the momentum equation, Eq. (8). This term can be 
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written in the form: - (w,Q~)(L~[~L~~~~~ + dq48,,,,) 4”. The presence of this fourth- 
order term has only a minor impact on the second-order physical viscosity term, in 
contrast to up-winding schemes which introduce second-order artificial viscosity. 
The finite differencing approximation of the viscous terms is also performed usi 
second-order expressions. Referring to Fig. (1), any one term of the form 3g a 8,b is 
differenced as 

where e and w refer to the east and the west stations, respectively, as shown in 
Fig. 1. 

i-l i it1 

j-l 

(a) Discretization Cell 

b) Clustered Grid 

FIG. 1. Discretization cell and the grid. 
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The Pressure Field 

The Poisson equation for the static pressure, Eq. (3), is solved iteratively at every 
time level. This equation and its boundary conditions are consistently discretized 
[l] in order to satisfy the compatibility condition. Referring to Fig. 1 the discre- 
tized form of Eq. (3) is written as 

The finite difference approximation of the terms on the left-hand side of Eq. (12) are 
then discretized at e, n, W, and s as shown in Fig. 1 using second-order central 
difference approximations: 

(13) 

(14) 

(15) 

Similar expressions at the west, north, and south stations can be obtained using the 
same procedure leading to the discrete form for the pressure equation, 

-(a,+a,+Pn+Ps)pi,j+(a,+(y,-y*)/4)pi-I,j+(a,+(y,-y,)/4)Pi+I,j 

+(P,+(Yw-y,)/4)p,j-l+(Dn+(Ye--~)/4)Pi+((Yw+y,)/4)Pi-l,j-l 

+ ((Y,+Y,)/4)Pi+l,j+1-((Y,+Y,)/4)Pi-l,j+l-((Y~+Y,)/4)Pi+l,j-l 

+ ozj = D”/At, (164 

where 

cJij = die - Olw + CJZn - Q2s. (16b) 

Boundary Conditions 

The Neumann boundary conditions represented by Eqs. (5) and (6), are dis- 
cretized at half-grid spacing from the boundaries. The expression for the boundary 
condition along the left boundary, at < = 0 (i = 1) is 

(Jor),j(P2,j-~l,j)-a(~~)=,j(P2,j+I+Pl,j+~-y2,j~l-~l,jI) 

1 =- 
2( ~l,,+~l)l,j+R;‘~(B2,j+~ +Q2,,j+l-Q2,j--1-Ql,j-l) 

-& [(J-‘U)l,j+ (J-‘U)2,j-((J-‘“)~,j-((J~‘u),jl. (17) 



IMPLICIT SOLUTION OF THE N-S EQUATIQNS 155 

The boundary conditions along the other three boundaries can be obtaine 
similar equations. 

The outlined finite differencing procedure for the pressure equation and bou 
ary condition satisfies the compatibility condition in discrete form. This can 
easily proven by adding Eq. (16b) and the discrete form of the equations for 
boundary conditions, represented by Eq. (17). 

~.~~n~f~rrnatio~ Parameters 

The consistent finite difference approximations for e pressure Poisson eq~a~~o~ 
and the Neumann boundary conditions, Eqs. (16) a (17), require calculation of 
the metric coefficients t,, t,, yX, and yv as well as the Jacobian of the transforma- 
tion, J, at the locations e, w, n, and s. Also, the finite difference a~~ro~irnat~o~ In 
the diffusion terms in the momentum equation, as expressed in Eq. (If ) requires the 
calculation of the same coefficients and the velocity components at the same loca- 
tions, Fig. 1. A simple averaging procedure is used for the velocity c 

es locations, but the metric coefficients and the Jacobian are deter 
al grid to exactly satisfy the metric identities [ 36 ] . Figure 1 b shows t 

grid that was used. 

STABILITK ANALYSIS FOR THE NON-ITERATIVE 

The von Neumann stability analysis is conducted for the momentum equations 
represented by Eq. (8) and does not take into account the coupling between the 
momentum equations and the pressure Poisson equation. For simplicity, the two- 
dimensional equations are considered in Cartesian coordinates. Assuming that the 
momentum equation flux vectors are homogeneous functions of the vector (q) and 
the flux vectors Jacobian matrices A” and B” are constants, the ap~~ox~~at~ 
factorized momentum equations, can be written as 

Cd+LBt(A”a,-~Re-‘a,,)]IZ+dt(Bnay-IRe~’ a,)] dq” 

= -At(A”d, + B”d,) q” + Ree’ ntV2qn-G (dx43XXXX + dy48yYi,Y) q”. (18) 

The last term on the right-hand side of the above equation represents the fourth 
order dissipation term which is added in the numerical sohrtions. ~xpa~di~~ the 
left-hand side of the above equation and expressing dq” as the difference between 
4 n+ 1 and q” one obtains 

(It-AtA”a,+AtB”d,-AtIRe-‘a,,-AtI 

+dt’(A”B”d,-Ree’ A”d,,,-Reel B”a,,+IRee2 a,,)} ~q”+’ 

= (I+At*(A”B”d,-Ret” Andx,,-lW1 

= - ; bfx4~x,.xx + Ay4 a,,,) 4”. 
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In conducting the stability analysis for Eq. (19) the solution at the new time step 
is considered as a multiplication of the solution at the old time step and an 
amplification matrix, G, 

‘4 “+&Gq”. (20) 

In order for the system to be stable, the eigenvalues of the G matrix should be less 
than unity. As can be seen from Eq. (19) the approximate factorization adds new 
term of order At2. Using a double Fourier decomposition for the solution q”, the 
central difference version of Eq. (19) gives 

where 
LG=R, (21) 

--sin$sinfj 

-2iRee’ 
A” 

---sin$(cosd-l)-2iRee’ 
B” 

Ax Ay2 
ysin4(cos$--1) 
Ay Ax 

+41Ree2 --& (1 -cos $)(l -cos i)] 
Ax2 Ay (22) 

and 

R=I+At’ 
A”B” . 

--sm$sin@--2iRee’ 
A” 

AxAy 
ysin$(cos$-1) 
Ax Ay 

-2iRee1 
B” 

----isin~(cos*-l) 
Ay Ax 

+41Ree2 -&j--$ (1 - cos $I(1 -cm 411 

4;[6-4(cos$+cos~)+cos211/+cos2~)]. (23) 

Considering a large wave number characteristic for the matrix G by taking the 
values of the Fourier components I/ and 4 at the upper limit, K, the matrices L and 
R simplify and two equal eigenvalues are obtained, 

1 - 20 + aIRe 
e1B2= [l -t-4b/Re+u/Re2]’ (24) 

where a = 16At2/A2x/A2y and b = At( l/A2x + l/A2y). 
It is easy to see from Eq. (24) that ) e1,2 1 d 1 for 0 <o d 1 at any Reynolds 

number. 
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RESULTS AND DISCUSSION 

The presented results consist of two parts, the first is concerned with the 
emonstration of the convergence and stabihty characteristics of the numerical 

scheme, while in the second the computed steady state pressure velocity and 
vorticity are compared with results of other methods. 

Two parameters were investigated to study their influence on 
characteristics of the numerical solution in a square driven cavity. 
are tbe maximum number of iterations allowed in the solution of 
tion, IP, and the CFL number (U Al/Ax). Both parameters influe 
time steps required to achieve a certain convergence criterion. The fohowing 
convergence criterion is adopted in this study: 

(25) 

The above equation represents the residue, E, in the computed varia 
U, which was taken less than or equal to 1V7. The results of th 
characteristics are presented in Fig. 2 through 4 and summarized in 

Figures 2 and 3 show the convergence characteristics for e = 100, using a 
uniform 41 x 41 grid and no artificial dissipation (o = 0). Figure demonstrates the 
change in the log norm of the residues for p, u, and v with time, when the maximum 
number of iterations in the pressure solution, IP, was fixed at 5 an both 

cases the CFL was taken to be 2. One can observe from Fig. 2 that &on 
of the maximum number of iterations for the pressure to 5 increases the oscillations 
in the residues of the velocities. These oscillations are not drastic, however, an 

lo-‘- lo-‘- .c-’ 
1 

FIG. 2. Effect of IP on the convergence history for Re = 100, w = 0, and CFL = 2. 
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TABLE I 

Solution Convergence Summary 

Re 
CFL 
w 
IP 
Time steps 

to convergence 

100 100 100 100 100 400 1000 
2 2 5 10 20 1-17 1-17 
0 0 0 0 0 0.8 1.0 
5 10 10 10 10 10 10 

512 384 286 299 438 840 1400 

solution still converges with a linear variation in log(c) with time steps. The con- 
vergence rate with the time steps is higher when a larger number of iterations is 
allowed in the solution of the pressure equation. The effect of the CFL number on 
the solution convergence characteristics is presented in Fig. 3, which shows the 
change in the log norm of the residues with the number of time steps for CFL = 2, 
5, and 20. One can observe a higher convergence rate at CFL = 5. This and other 
results at CFL = 10, as summarized in Table I, suggest an optimum value of CFL 
between 5 and 10. Figures 2 and 3 show the linear variation of log(s) with the 
number of time steps and clearly demonstrate the excellent convergence charac- 
teristics of the present method under varying conditions. The rest of the results at 
R,= 400 and 1000 were obtained using a clustered grid as shown in Fig. 1. The 
non-uniform grid used in the calculation is exponentially graded with the smallest 
grid spacing next to the wall equal to 0.003, of the cavity’s characteristic length. A 
fixed time step of 0.05 was used with a maximum of 10 iterations allowed for the 
pressure equation at each time step. For R, = 400 and 1000 the dissipation factor, 
w, was taken to be 0.8 and 1.0, respectively. A comparison of the convergence 

10-l 1 

FIG. 3. Effect of CFL on the convergence history for Re = 100, o = 0, and IP = 10. 
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FIG. 4. Effect of Re on the convergence history 

histories for Reynolds numbers, 100 and 1000, is presented in Fig. 4. One ca 
observe from this figure that when the coefficient of the fourth-order dissipatio 
term is not zero the oscillations in the velocity residues are greatly reduced with a 
consequent improvement in the pressure residue as well. 

A stability analysis has been conducted based on Eqs. (21) to (23), and the 
results of a numerical study of the amplification matrix are presented in Figs. 5 
through 7. These figures show the contours of the modulus of the two eigenva 
of the amplification matrix over wave numbers, C$ and (1/, ranging between zero 
71. Figure 5 gives the results of the stability analysis for Re = 100, with no artificial 
dissipation (o = 0), at the location in the cavity corresponding to the grid point 
(3, 3) near the left-hand corner of the upper moving wall. This figure demonstrates 
that the eigenvalues of the amplification matrix are equal to one at Q = 0 and $ = 0, 
but are less than one for all other I$ and $ values. Figures 6 and 7 present the effect 
of the fourth-order dissipation coeffkient w on the two eigenvalues for Re = 400 at 
the (31, 21) location. One can see from these figures that w generally reduces the 

FIG. 5. Modulus of the eigenvalue of the amplification matrix for Re = 100 and CFL = 2 

581/6h/l-11 
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w= c w= 0.8 

FIG. 6. Effect of CO on the modulus of the first eigenvalue of the amplification matrix at Re = 400. 

modulus of both eigenvalues over the range of the wave numbers, except at 
4 = I) = 0, where the eigenvalues are always equal to one. The results of the stability 
analysis are not presented at higher Reynolds number since the numerical study of 
the amplification matrix was conducted using a uniform nonclustered grid. 

The results for the computed vorticity, velocities, and pressure in the driven 
cavity are presented in Figs. 8 through 15 for Reynolds numbers 100,400, and 1000. 
The computed results are compared with the available results of other investigators, 
in order to validate the accuracy of the numerical procedure. The vorticity contours 
and the velocity profiles are presented together with the results of other 
investigators [19, 321, in Figs. 8 through 12. Both studies obtained their results 
using the stream function vorticity formulation, Burggraf [ 191 used 41 x 41 grid 
and Schreiber [32] used 180 x 180 grid and a fourth-order accurate technique. One 
can observe the agreement between the computed vorticity contours and 
Burggrafs [ 191 results at Re = 100 and Schreiber’s [32] at Re = 400 and 1000. The 
velocity profiles for u and u Re = 1000 are compared with the results by 

FIG. 7. Effect of CO on the modulus of the second eigenvalue of the amplification matrix at Re = 400. 
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Present Results Results of Reference (19) 

FIG. 8. Vorticity contours at Re = 100. 
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FIG. 9. Vorticity contours at Re = 400, 
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FIG. 10. Vorticity 
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contours at Re = 1000. 
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PreSent ReS”ltS ReS”ltS of Reference (32) 

FIG. 11. Velocity profiles for the velocity component, u, at Re = 1000. 

0.1 

Y= 0 x 1 

Present Results 

FIG. 12. Velocity profiles for the 

15 
0 

-7.5 -15 

-15 

E 0 

-0.5 
-7.5 

0 x 1 

Results Of Reference (32) 

velocity component, v, at Re = 1000. 

5 

-7.5 -15 

-15 d!l 0 

-0.5 -7.5 

Present FeSUlJcS ReSUltS Of Reference (19) 

FIG. 13. Pressure coefficient contours at Re = 100. 
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Present Results ReSUltS of Reference (19) 

FIG. 14. Pressure Coefficient contours at Re = 400. 

Schreiber [32] in Figs. 11 and 12. The comparison shows excellent agreement even 
though a relatively coarse grid was used in the present corn 

Figures 13 through 15 present the computed static pressure coefficient and t 
results of Res. [ 17, 361, at Re = 100, 400, and 1000. The numerical solution for t 
pressure in Ref. [36] was obtained on a 69 x 69 staggered grid. The static pressure 
coefficient is defined as 

cp = 2(P -Pow2> GFl 

where p. is the reference pressure at the center of the cavity’s lower boun 
U is the cavity’s upper surface velocity. One can see that the results of the present 
method are in excellent agreement with the results obtained by Burggraf [17] at 
100 and 400 Reynolds numbers. The computed static pressure coeffcient at 

e = 1000 is shown in Fig. 15, with the results of Ref. [36]. 

160 
100 

40 
0 

-40 

100.0 
40.0 
-0.c 

-40.0 

-40.0 

-40.0 

Present Results Results or Reference (361 

FIG. 15. Pressure coefficient contours at Re = 1000. 
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FIG. 16. The clustered grid for the cascade flow. 

Numerical solutions for the steady state flow in the circular arc cascade were 
obtained at Reynolds number up to Re = 1000. The configuration corresponds to a 
thickness to chord ratio of 0.2 and pitch to chord ratio of 2.0. Figure 16 shows the 
81 x 41 clustered grid used in the lower half of the symmetric blade to blade flow 
passage. The grid was generated using the Poisson equation approach of Ref. [37]. 
The smallest grid spacing next to the wall was equal to 0.005 of the cascade pitch. 
A maximum of 10 iterations were allowed in the solution of the elliptic pressure 
equation at each time step, but only one or two iterations were required to bring 

Present Results 

Results of Reference (32) 

FIG. 17. Velocity contours for the cascade flow at Re = 1000. 
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Present Results 

Results of Reference (321 

FIG. 18. Pressure coefficient contours for cascade fiOW at Re = 1000. 
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the residue back within the convergence criterion near the steady state. The 
computed results for the cascade are compared with the results using the artificial 
compressibility method in Figs. 17 through 19, A factored AD1 scheme, similar to 
that given by Eq. (8), was developed for the implicit solution of the momentum and 
continuity equation in the artificial compressibility formulation. Figures 17 and 18 
show the computed velocity and pressure contours. The value of the normalized 
pressure is referenced to the pressure at the blade leading edge. Figure 19 presents 
the corresponding velocity profiles. In particular, Figs. 17 and 19 suggest flow 
separation at 8.5% of the chord. 

CONCLUSIONS 

An implicit procedure is developed for the solution of the incompressible 
Navier-Stokes equations in primitive variables. The implicit scheme of approximate 
factorization is used in the solution of the time dependent momentum equations for 
the velocity field while the pressure is computed from a Poisson type equation on 
a non-staggered grid. The analysis is presented in general curvilinear coordinates 
for a two-dimensional case since the extension to the three-dimensional case’is 
straightforward. A consistent finite difference scheme, that is used and satisfies the 
compatibility condition of the pressure Poisson equation with Neumann boundary 
conditions, is developed in general curvilinear coordinates. A von Neumann 
stability analysis of the noniterative phase of the numerical scheme is conducted. 
Results are presented to demonstrate the excellent convergence and stability charac- 
teristics of the present method. 
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